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then by units these values (5) and (6) in 
equation (4)2 can easily be found. 

In the classical theory of regression 
assumptions of normality are generally 
made and these in turn lead to the 
assumption of constancy of variance. In 
many situations the assumption of con- 
stancy of variance is not satisfied. 
This paper is concerned with the study 
of such a model in simple linear 
regression. Computational programs have 
been obtained to give estimates of 
parameters in case the standard deviation 
is assumed to be linear. 

Simple linear regression of Y on X 
is usually defined by the equation 

E[YIX =x] = and Var[YIX -x] = 02 for 
all x. Here and are the regression 
coefficients and is the assumed 
constant variance. The statistical 
problem of the investigator here is to 
estimate values of and with and 
computed from a random sample. These 
estimates are of use in predicting values 
of the dependent statistical variable Y 
for observed values of the independent 
mathematical variable X. In addition, 
since in most situations the investigator 
would want to calculate a confidence band 
for his predicting equation, an estimator 

of 
2 

is also needed. The three 
estimators are usually derived using the 
method of maximum likelihood. 

Let (X1,Y1), (X2'Y2), ... , (Xn,Yn) 

be a random sample taken from the popula- 
tion of concern (assumed to be normal and 
Var[YIX -x] is constant for all x). To 

estimate the parameters a, and 02 the 
likelihood function 

n n 

L 2- 

(a+pxi)]2 (1) 

is set up and we take the three partial 
derivatives 

a(loa L) a(loa L) and 3(1°q 1L) 
be ' 

and set them equal to O. This procedure 
yields 

n 
a 0, 

n 

l xi ) - 0 

n 
and nag (4) 

Upon solving the normal equations (2) and 
(3) for and we obtain the desired 
estimators 
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(6) 

As an example of the above model 
consider the situation where an engineer 
wishes to determine the effect of heat 
and cold on the expansion and contraction 
of a certain metal (with a specified 
temperature) to be used in the construc- 
tion of a bridge. He takes a sample of 
known length of this metal at a known 
temperature (the specified temperature) 
and heats it to a new, known temperature, 
and he measures the new length of the 
sample. He repeats this experiment as 
often as he feels is necessary, each time 
heating or cooling a sample of the same 
length from the same temperature. 
However, due to the measuring device, the 
time elapsed between the time when the 
metal has reached the desired temperature 
and the time it is measured, and human 
error, he does not expect his measure- 
ments to be exactly correct. Further he 
assumes that the errors in the measure- 
ments are normally distributed and 
independent of each other. By allowing 
the lengths of the pieces of metal to be 
represented by the random variable Y and 
the temperature by the variable X, the 
preceding model seems to fit this 
situatign. The engineer can compute 

ad set up prediction equation 
jX, calculate a desired confidence 

band, and construct the bridge accordingly. 

However, consider an example of the 
of the public health official who needs 
to predict the hours of health care that 
will be needed per year by the adults at 
each age over 21 years of age. He takes 
a stratified random sample and obtains a 
pair of values for each individual: X - 
age and Y - hours of medical care needed 
per year. The official might very well 
choose the following as his model: Let 

- a ei where are normal 

distributed independent errors with a 
mean of 0 and at least two of the are 

distinct. In this model the assumption 

that all are equal is not a logical 

one. It would seem that as age increases, 
not only would the average need for 
medical care increase, but so would the 
variation of this need. Also, just 
because of the increase in the values of 
the random variable with the increase in 
the age - X, the variances tend to 

increase. For these reasons the official 
could pick his model for regression as 



and 0 
2 

where = y +bxi. 

Now as before, the statistical problem 
is to estimate the regression coefficients 
and the variances, i.e. to find 
and U. However, with this model the 
computation of these estimators is not 
simple as in the previous model. It is 
the purpose of this paper to offer a 
method of deriving these estimators. The 
general theory used here would seem to 
generalize to models with non- linear 
regression and standard deviation 
equations, as we as multiple regression 
models, but the Computational procedures 
are bound to be more complicated. 

Given a set of data (X1,11)' 

... , (Xn,Yn)) that fulfill the require- 

ments of our new model, the density 
function of Y is given by 

(y ) 

(7) 

2n (y +bxi ) 

The method of estimation will again be 
that of maximum likelihood. Th. likeli- 
hood function now becomes 

n a 2 

i1 
(8) 

+bx ) 

and log(L) log 2A-iillog(y+6xi) 

n )]2 

2 i (y+bxi) 

(9) 

Taking the first partial derivative of 
(9) with respect to each of a, p, y and 
b and setting these equal to 0 we have 
the following system of four equations 
in the four unknowns y and 6: 

0 
=1 

CYi- (a 0 i =1 )2 

(lo) 

n 0 
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alo(L) 
a Y+ xi 

n (a +ßx )]2 
E O. 
=1 (y+bxi) 

and are the solutions to these 
four equations and are our desired 
estimators of a, p, y and respectively. 

Before continuing, let's consider 
two special cases: one where = 0 and 
one where y O. If b 0 (y 4. 0) then 
the system of equations (10) reduces to 
equations (2), (3) and (4), the case with 
a constant variance, and a closed fora 
solution exists. If y 0 (b 0) then 
system (10) becomes 

CYi (a )]2 

0 

i n (11) D p( 
xi 

a i1 
Upon solving the first two of these for 

and obtain the closed form solution 

á i (12) 

- ) 
2 

and p (13) 

) 

2 

Then by using these values from (12) and 
(13) in the third equation of system (11) 
we get 

CYi- 

2 (14) 

However if both y 4. 0 and b 0, 
then a simple closed form solution of the 
system of equations (10) does not exist. 
An approach to this problem can be taken 
through the Newton -Raphson iteration 
method of approximating the solution set 
for a, y and b. This method is based 
on the Taylor series expansion. Consider 
the system of equations (10) as the 
following system 

f1(a, y, 
6) 

0 

Y 6) 0 

f3(a y9 6) 0 

f4(a, y 6) 0 

(15) 



Expanding these four functions in a 
Taylor series we get for i = 1, 2, 3, 4 

0 

+ 

+ 

where fie, and fib are respective 

first partial derivatives of fi. By 

replacing a, 

(16) 

b with 
+l' Bk +l' 

neglecting the non -linear 
+1' +l' 

terms in 
+1 -k +l ßk)' ?k)' 

(6k +l k) 
of the expansion and dropping 

the middle term of the double equality 
(16), these equations for i = 1, 2, 3, 4 
become 

-fi( 

+ 

4ykfiy(ak,ßk,yk,6k) 

kfib(ak,0k'yk,bk) 
where 

+1 A- +l 

(17) 

We solve these four linear equations 
for knowing 

the values of yk 6k, we now 

have values for 
8k +l' Yk +l 

and 

which are better estimates of actual 
solutions a, and b, than ßk yk 
and 6k are. Then increase k by one and 
continue this process yntil the maximum 
of Oak, 80k, and tends toward 

zero. We stop the iteration process when 
max < e where e is a 

predetermined small number, and for this 
value of k we use 

and to serve as 

values for In order to 
complete this process, one needs to have 
initial estimates 

00, y0 
and -60. 

Each step in this process, that is, the 
system (17), is solved easiest by setting 
up the matrix system - - 

fly 

f 2a f 2y f 26 "k -f2 
(18) 

f3a f30 f3y f36 

1 

-f3 

It seems easier to estimate and 

separately from y0 and 60 instead of 

estimating all four in one step. When 
does not depend on x, the method of 
maximum likelihood for obtaining the 
estimates of and does not involve the 
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variance, 2. Our new model assumes a 
linear change in the standard deviation 
of normal populations, but since the 
normal distribution is symetric, it seems 
reasonable to use the same method even in 
our case where = y + bx. 

To find the initial estimates, and 

we solve the normal equations (2) and 

(3) as before. Since we originally 
assumed that there are at least two 
values of that are different, we see 

that the normal equations have a unique 
solution. Hence the values we use for 

and 
00 

are the right sides of equa- 

tions (5) and (6) respectively. 

Because of our assumption, = y e bx, 
the original method of estimating will 
not work. However, the fact that cis a 
linear function of x is very helpful. 
When x is small, we naturally expect to 
take on different values than when x is 
large. In the case when we have several 
values of y for each value of x, one way 
of finding initial estimates for y 
is to estimate the population of the 
distribution of y's for each x, and then 
a least -squares line is fitted to the 
points of the estimated standard devia- 
tions for the various x's. The 
coefficients of this straight line would 
then serve as the initial estimates 

and 60. This method of obtaining initial 
estimates would not work if there were 
only one value of y for each value of x 
since there would be no way of calcula- 
ting the standard deviation with only one 
value. (If only a few x's had multiple 
y's, this method would produce poor and 
erratic results.) In that case, and in 
general, we can group some of smaller x 
values together and assume that the 
standard deviation of the y distributions, 
for each of the grouped x values, is the 
same. We form two more groups collecting 
middle values of x and larger values of x 
together. The standard deviations, s, 
for the y's and the means, are obtained 
for each of these three groups. The 
graph of (x,$), with these three points 
on it, gives a least -squares line. This 
line may be regarded as an estimate of 
the equation = y + bx thus allowing us 
to use the coefficients of this calcula- 
ted line as our values for y0 and Ó. By 

using standard least -squares techniques 
our estimates are 

El 
-2) 

0 
iEl (xi 

(19) 

and y0= I - (20) 

where ) and ) 



the means and standard deviations of the 
three groupa. 

The importance of good estimates 
a0, 80, and is that if these 

initial values are close to the values of 
a*, *, y* and , then the Newton- 
iteration produces solutions that con- 
verge to á, and quickly. 

There is one major limitation to the 
Newton -Raphson iteration method of 
solving the system of equations (17) or 
equivalently (18). When the Jacobian 
determinant 

fla fly 

f2a 

f3a f3y f3b 

f 4a 
f4y 

vanishes at or near any of the points 

Ok' 
in the process, slow 

convergence, or especially, divergence of 
the iteration may be expected. This can 
easily be seen in the case of one 
variable. In this case equations (16) 
become 

0 =f(a) +(a- 

(a f" (mo) 

and thus equations (17) reduce to 

+1 . 

Upon solving for'ak 
+l 

we obtain 

22) 

(23) 

f, (24) 

where now the Jacobian is J If' 
(aid I 

If at any time this determinant, 

vanishes, we see that the resulting 
solution for in equation (24) does 
not make sense. When we have four varia- 
bles instead of one, the situation is 
more involved, but the idea is essentially 
the same. the value of J vanishes at 
or (in the case of many variables) near 
the point then the 

resulting solution for 
°k+l' +l' 

does not make sense. 

If this sitution occurs, as an 
alternative to us ng the unobtainable *, 

6* for , and , it appears 
that y0 and may serve as 

acceptable substitutes. 

In conclusion, consider two examples, 
For both of these examples the values of 
the parameters a, ß, y and b were set, 
and eight different values of X were 
chosen. For each value of X, five values 
of Y were derived using a table of normal, 
zero -one, random deviates - z - and 
letting y =(y +bx)(z) +(a 
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Example 1: 
TABLE I 

Y 

-3.64 11.96 11.00 -1.48 11.60 
2.0 15.76 44.88 4.28 -17.28 21.22 
3.0 9.68 -3.28 45.36 26.32 -14.00 
4.0 24.04 16.10 2.60 -1.72 13.22 
5.0 24.20 23.80 33.20 8.40 27.40 
6.0 16.84 -0.54 30.48 4.52 13.98 
7.0 73.52 41.81 29.36 31.04 67.28 
8.0 9.50 51.36 24.06 3.24 14.70 

The preset values of the parameters were 
a = 5.0, = 3.0, y 10.0 and 6 = 2.0. 
With e = 0.0001 the values computed by 
an IBM 7094 computer are a* 3.16, 

. 3.42, y* 12.46 and 

= 6* = 1.14. 

Example 2: 
TABLE II 

1.0 -1.58 11.93 -6.13 6.33 -5.57 
2.0 19.07 18.89 0.02 6.38 7.01 
5.0 27.05 39.05 51.35 33.05 15.80 
6.0 9.63 15.07 25.61 16.09 16.77 
9.0 39.12 -27.35 33.60 36.36 54.30 
10.0 62.75 -1.75 30.75 -35.75 35.25 
12.0 50.47 108.96 88.46 53.08 39.45 
13.0 3.73 56.81 4.66 68.28 57.12 

The preset values of the parameters were 
a 2.0, = 3.0, y 5.0 and b = 2.0. 
With = 0.0001 the computed values are 

0.488, = 3.83, 
4.26 and b s b* 2.52. 

When the values of á, and are 
substituted for q,, ß, y and 6 in the left 
sides of equations (l,1), the maximum 
value of , ) for i 1, 2, 3, 

4 is 0.00000021 in example 1 and 
0.00000014 in example 2. 

And finally, in support of the 
adequacy of and in case the 

Newton -Raphson iteration method diverges, 
the values of these initial estimates in 
example 1 are 3.0, 3.46, 

Yo 11.22 and 1.13. 


